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Abstract - A collocation method employing B-splines as approximating functions and the Gaussian 
quadrature points as the collocation points is introduced for the first time to the solution of heat transfer 
problems governed by simultaneous conduction and radiation. It is demonstrated that this method provides 
an alternative noniterative technique which, with only a small number of equations, can produce solutions 
as accurate as the linite-difference method, and at a very reasonable computational cost. By comparison with 
exact analytical solution for the case of pure radiation, it is shown that, for up to moderate values of optical 
thickness, one needs to solve no more than 6 equations to obtain an accuracy better than 27,. The method 
with these characteristics appears to be an attractive candidate for the solution of radiation~onduction 

problems pertaining to LMFBR core disruptive meltdown accident analyses. 

NOMENCLATURE 

coefficients of expansion ; 
multiplicity at the interior breakpoints; 
function defined by equation (15); 
order of B-spiines; 
number of intervals; 
number of boundary conditions; 
conduction-radiation parameter defined 
by equation (4); 
normalized B-spiines defined by equation 
(16); 
the number of expansion coefficients ; 
the number of collocation points per 
interval ; 
radiation heat flux; 
total heat flux at the lower wail; 
temperature; 
temperature at the lower wall; 
temperature at the upper wall; 
dimensional coordinate from the lower 
wail. 

Greek symbois 

2[oT4(0) - T;]/(T’: - 7-:); 

2[aT4(qo) - T:]/(T’: - T;); 
nondimensional coordinate from the 
lower plate ; 

breakpoints ; 
T/T, ; 
absorption coefficient; 
Gaussian-Legendre points in the interval 
[--l,l]; 
degree of smoothness at the interior 
breakpoints; 

* Energetics Department, The University of Wisconsin- 
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dummy integration variable in equation 

(2); 
knots at the breakpoints; 
Stefan-Boi~mann constant. 

INTROlXKTION 

IN HYPOTHETICAL core disruptive and meltdown ac- 
cidents such as initiated by loss offlow in a liquid metal 
cooled fast breeder reactor (LMFBR), excessively high 
tem~ratures are encountered such that radiation can 
become a significant mode of heat transfer com- 
pared to conduction and convection. Recently, 
effort has been expended to investigate the effect of 
radiation heat transfer in some safety analyses [l-3]. 
However integral analyses of these postulated ac- 
cidents require massive computer codes which can 
strain the capacity ofeven the largest of the computers 
available both with respect to storage and computing 
time requirements. Therefore, one of the desired 
requirements for including the effect of radiation heat 
transfer in accident analysis codes is that the com- 
putational method utilized be of high order so that the 
storage and computation time requirements are mini- 
mized. It is with this motivation that the application of 
the collocation method to radiation heat transfer 
problems is pursued in this paper. 

It is well known that the formulation of the radiative 
heat transfer problem combined with the conduction 
mode of heat transfer leads to a nonlinear 
integro-differential equation. There are no genera1 
solutions available for this integro-differential equa- 
tion because of inherent complexity resulting from 
the radiative contribution to the total heat flux for a 
given geometrical configuration of the system. There- 
fore, by necessity only unite-different and approx- 
imate solutions for very specific geometrical con- 
figurations are available. Steady-state heat transfer by . 
coupled conduction and radiation through a plane 
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layer of an absorbing and emitting medium bounded 
by two opaque parallel walls has been studied most 
widely. Viskanta and Gosh [4,5] solved iteratively 
the Fredholm nonlinear integral equation resulting 
from integrating the original integro-differential 
equation twice. Using the same technique, the non- 
gray effects in the above geometry were studied by 
Crosbie and Viskanta [6] and Anderson and Viskanta 
[7]. There are, however, a number of other methods 
such as the exponential kernel approximation em- 

ployed by Lick [g], the method of quasilinearization 
used by Timmons and Mingle [9], the combination of 
normal-mode expansion and an iterative technique 
employed by Lii and Ozisik [lo], and the method in 
which the integro-differential equation is reduced to a 
nonlinear differential equation by a Taylor series 
expansion of the dependent variable occurring as the 

fourth power of temperature as used by Anderson and 
Viskanta [ll]. An extensive review of the literature on 

heat transfer in semitransparent solids is presented by 
Viskanta and Anderson [12]. For the case of pure 
radiation in the above-mentioned plane geometry, 
both exact analytical and numerical solutions [13-151 

are also available. The majority of the above studies 
have utilized numerical methods which are iterative in 

nature. Although the respective procedures underlying 
these iterative methods are quite straightforward, they 
are computationally very time-consuming and have 
large storage requirements. This is because of the 
iterations involved and the size of the system of finite- 
difference equations resulting from the choice of small 
step sizes necessary for producing desired accuracy, 
particularly for the case of an optically thick medium. 
This last limitation of finite-difference methods is 
particularly serious with regard to their application to 
LMFBR accident analysis codes because molten 
mixed oxide fuels of uranium and plutonium are 

optically thick. 

by Kanasz and Hummer [16]. These authors used the 
smooth cubic splines with breakpoints as the col- 
location points. It has been shown, however, by 
Douglas and Dupont [17] and De Boor and Swartz 
[18] that the use of other than the optimum points as 
collocation points produces lower order accuracy. 
Similar to the above spline collocation method, but 
more accurate, is the method known as the Hermitian 
method developed by Auer [19] also for solving 
radiative problems. 

DESCRlPTlON OF THE PROBLEM 

Since the purpose of the present paper is to dem- 
onstrate for the first time the applicability, versatility 
and the order of accuracy of the collocation method to 

combined radiation and conduction heat transfer 
problems, we have chosen a simple physical system 
which retains the essential features of radiative heat 
transfer but avoids the distractions of complex 
geometrical relationships. The physical system con- 
sidered is shown in Fig. 1. We will assume that the 
medium is gray, nonscattering and at rest, and that the 
absorption coefficient and thermal conductivity of the 
medium are independent of temperature. The bound- 
ing surfaces consist of two parallel black plates which 
extend indefinitely in all directions and are isothermal 
but maintained at two different temperatures T, and 
T,, respectively. That is, heat transfer by both modes 
under consideration is one-dimensional. 

With the previously discussed assumptions, the 
equation expressing conservation of energy is given as 

PO1 

An alternative method, based on collocation com- 

bined with the use of approximating subspaces, over- 
comes many of the above-described disadvantages of 
the iterative finite-difference methods by virtue of 
being a higher order and noniterative method requir- 
ing the solution of only a small number of equations to 
achieve the desired accuracy at a very reasonable 
computational cost. The method consists of expanding 
the unknown temperature profile in terms of a piece- 
wise B-spline basis in the space variable. The unknown 
coefficients in the expansion are obtained by requiring 
that the resulting equation be satisfied at a number of 
points (in particular at the Gaussian quadrature 
points) in the field equal to the number of unknown 
coefficients. This collocation procedure reduces the 
integroodifferential equation to a system of nonlinear 
algebraic equations which are solved by nonlinear 
system solvers based on various modifications and 
combinations of Newton’s algorithm and the method 
of steepest descent. 

where K is the thermal conductivity of medium, T is 
the absolute temperature in “K, k is the absorption 
coefficient, q is the optical depth defined as 1 = my, y 
being the coordinate from the lower plate. Here, qr is 
the radiation heat flux given as [20] 

q,(r?) = 2oT:E,(rl) - 2aT:E& - r/) 

r ‘I 

+2 aT4WE2(rl - 5N5 

.o 

‘II! 

-2 
s 

aT4E,(< - q)d<. (2a) 
‘1 

The total heat flux at the lower wall, conductive plus 
radiative, is 

\ 
7&=KL 

I A7)=KY 

TI 
//////////////////////////////L 

Previously, for solving pure radiative transfer prob- FIG. 1. One-dimensional combined conduction and 
lems, the spline collocation method has been utilized radiation. 
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qw= - c (2b) 

The derivative of heat flux q,(q) can be written as 

dq, 
*=- I 4 4 2a7-,Ez(rl) + 2aT2EAq, - v) 

/ 

‘!I0 

+2 oT4(6)E,(lr? - <IId< -407-~(q) 
I 
.(3) 

*o 

Here, the E,(t) are the exponential integral functions 

and ‘lo is the optical thickness of the medium. 
It is convenient to nondimensionalize the above 

equations by introducing the following dimensionless 
quantities : 

where T, is an arbitrary temperature. 
With the use of the above nondimensional quan- 

tities, and of equation (3) into equation (l), we obtain 

s ‘111 

+ e4E2h - 1) + e4W,(lrl - Cl)d5 = 0. (5) 
0 1 

Expression (2) takes the form 

q: = & = I 2e:E,(q) - e:wh - VI 

(64 

The total heat flux qF given by expression (2b) in 
dimensionless notation becomes 

I I 
41, 

- 2Gwl”) + e4W,Wt 
0 1 

. W) 

The boundary conditions that equation (5) must 
satisfy are 

e(O) = el. e(q,) = 6. (7) 

Clearly the integro-differential equation (5) is non- 
linear because temperature 0(q) occurs to the fourth 
power in terms depicting the effect of radiation. The 
parameter N,, occurring in this equation is called the 
conduction-radiation parameter and determines the 
relative role of the conduction vs radiation term. 
For large values of N,,, conduction predominates, and 
at low values of N,.,, radiation is the dominant mode of 
heat transfer. We may note specifically as N,, + 0, 
equation (5) reduces to an integral equation, in which 

case the boundary conditions (7) must be dropped; 
consequently, ‘temperature slip’ at the bounding sur- 

faces will occur. 

METHOD 

We shall assume that e(q) can be approximated by 
nonsmooth piecewise polynomials in q generated by 
B-spline basis sets. More specifically, let the interval 
[O,q,] be subdivided by a set of points, called the 
breakpoints, thus 

lr:o=?/, <4? <...<q,<r/,+, =‘lo. 

Relative to this partition n, let Y,,,,, denote the space 
of piecewise polynomials {fi)! = 1 oforder k (degree = k 
.- 1) and smoothness V = {vi\fz2 (i.e. continuity of 
derivatives of functions J up to order vi - 1) at the 
interior breakpoints. So 

dim ./P Ir.n.s = n = kl - i vi, (8) 
i-2 

where the first term represents the total number of 
coefficients of I piecewise polynomials (one per interval 
of the partition n) and the second term represents the 
total number of smoothness constraints to be imposed 
on functions {fijf_, at the interior points. Now, let the 

approximating subspace Yk,,,, c .Ylr,n,, be obtained 
by imposing m boundary conditions on the elements in 

.Y,.,.,, then 

dim Y’k,n,r = kl - 1 vi -m. (9) 
i=2 

We now seek an approximate solution of equation (5) 
of the form 

(10) 
i=l 

where the set {wi(~)}~, , forms a basis for the approx- 
imating subspace .YPL,*., of functions which satisfy 
boundary conditions (7). The expansion (10) is then 

used in equation (5) and this equation is required to 
hold at a specified set of (collocation) points. This 
proce& leads to a system of nonlinear algebraic 
equations for the coefficients {aij:= ,. Now let p be the 
number of collocation points selected per interval in 
partition 7c, then we must have 

dim .YL,n.V = pl. (11) 

Thus, we obtain from equations (9) and (11) 

pl = kl - i vi - m. (12) 
i=2 

If we require that vi = v at each of the interior 
breakpoints, identity (12) becomes 

pl E kl-v(l--1)-m = (k-v)l+(v-m) (13) 

which must hold for any number ofsubintervals I; thus 

k = p + v,, v = m, n = pl+ v. (14) 

The above procedure and the discussion of the B- 
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splines to be given below will be well illustrated 

subsequently by considering very specific examples. 

B-spline busis 

A very detailed discussion of B-splines basis is given 
in Refs. [21] and [22]. In the latter reference a 

discussion of an algorithm for generating these splines 
is also given. For use in the present analysis, we 
summarize below some of the important features of B- 
splines. 

To generate a B-spline basis for the space .?Pt,,.,, 

define 

gk(s;q)=(s-qy+-:-’ = i yk-’ S>rl 

s<rl (15) 

and let the set of multiple knots {<ill:‘: be defined by 

<, = = Ck = u,, 

h+cf.+ +</,-,+I = “‘= h +c/; + e <I, = 9jt .i G 1, 

5 “+, = 
= <n+k = ‘Il+l. 

The first and last breakpoints, 9, and r),+ ,, have 
multiplicity k and the interior breakpoints have mul- 
tiplicity d, = k - vj The construction of these knots is 
shown schematically in Fig. 2. With each knot, we 
associate the normalized B-spline Ni,k(r)) defined as the 
kth divided difference of yk(s, ‘I) in s on the set of knots 

51, , <,+k, i.e. 

Ni.k(rf) = (<i+k - <ibk(<i?"'*<i+k?f) 

=~k(<i+l~...,<i+k?f) 

-_k(~i,...,~i+k-I;rl). (16) 

Thus, from equations (15) and (16), we have 

Ni.k(S) = 0 for C'#[<i, <i+k]t (17) 

which implies that N,,,(q) has its support in [I&, <i+k]. 
In addition the normalized B-splines Ni,k(r)) possess 
the following useful properties : 

BREAKPOINTS: l?,=O 
712 

$, Ni.k(q) E 1 > (18) 

Ni.k(r?) > 0 for ‘IE(<i, <i+k) , (19) 

N,.k(q,) = 1, N;.k(s,)= -(k - 1)&r -II)* 

(20) 

N,.kh+,) = 1, N:,kh+,+ = (k- 1)/h+, 'f/h. 

(21) 

Since Ni,k(q) 2 0 for 1 < i < n and r] E [vi, r),+i], 
it follows from normalization property (18) that 

Ni,k(r)i) = 0 for 1 < i < II, 

Ni,k(V,+l) = 0 for 1 < i < n. (22a,b) 

For the values of the derivatives of Ni,k(r)) at the end 
breakpoints, we start by considering the behavior of 
Ni,k(rl) at 1 = rlI for 2 < i Q n. Let us first consider the 
case k + 1 < i Q n: since Ni.k(rl) has its support in 

(ii, <i+k) with ii > q2, it follows that Ni,k(tf) = Ofor r) < 
tlZ ; thus Ni*(rl) and all its derivatives will vanish at q = 
vi. Next, we consider 2 < i < k, and in particular the 
case i = 3 : since N,,,(q) is a kth divided difference over 
the set Cs,. , CL+ 3, where <X = . = tk( =ql) appear 
k - 2 times, this divided difference N,,,(r)) has a knot 
of multiplicity d = k - 2 at r) = q,; since the 
smoothness index v for N,+(q) at vi satisfies the 
relation v = k - d = k - (k - 2) = 2, we see that 
N3.k(~) has a continuous derivative at r) = q,. Now 
N, k(r)) = 0 for r) < r), ; therefore N;,,(r),) = 0. When 3 
< i < k, a similar argument shows that N,,k(q) has i - 
2 continuous derivatives at r) = vi, thus Ni,k(ql) = 0 
for 2 < i < k. More generally, we have 

Ni$(rli)=O for O<y<i-2 and 2<igk. 

(23) 

Here we have used equation (22a) for the case i = 2. 
From the normalization property (18) we have 

j, N:.,(V) = 0 for ‘lE [rl,, ‘I,+ i]. (24) 

‘?s % P+,’ ’ 

CONTINUITY CONDITIONS: u,=o v2 v3 ".! %+I= O 

KNOT MULTIPLICITY: d, = k-u, =k d2 = k-u, d3 =k-u3 d, = k-t+ dp+, = k- “1+, = k 

KNOTS: 

FIG. 2. Construction of knots at various breakpoints. 
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The use of equation (23) in equation (24) gives 

N,.k(rl,) + NU(91) = 0 (25) 

with N;+(r),) given by equation (20). Analogous 
argument will show that 

N&!(r),+,)=0 for O<q<n-i-l 

and n - k + 1 Q i < n - 1. (26) 

Thus, from equations (24) and (26), we obtain 

Nb-,.&r+t) + N;.&+I) = 0 (27) 

with Nb.,(q,+ r) given by equation (21). 

Expansions in normalized B-splines 

Expansion (10) for e(n) in terms of normalized B- 
splines becomes 

@(s) = i aiNi.dq). 
i=l 

@a) 

Since each N&) is nonzero only in the interval r) E [&, 
&+J,it follows that when t) l (q~,q~+,), NJr)) # Ofor i 

=.I--k+ l,..., JwithJ=j(k-v)+vforl <,j<l. 
So equation (28a) becomes 

for qE(tljT ‘Ij+l)t 1 <j< I (28b) 

where J,, = J - k + 1. 
In application to equation (5), we observe that two 

boundary conditions given by equation (7) are im- 
posed, so that m = v = 2 in equation (14). Thus we will 
be concerned with normalized B-splines of order k = 

p + 2. The substitution of equation (28) into equation 
(5) yields 

N, T uiNI’,(V) - 1: aiNi.&U)J 

+ ; e:E,(rl) + @:E,(n, - rl) 
( 

+ Jr 17 aiNi.~(6)liB,(lrl-il)dij =O (29) 

and the use of equations (20), (21) and (22) in equation 
(7) yields 

a, = O,, (I, = e2. (30) 

With a, = 0, and a, = 02, equation (29) contains n - 
2 unknown coefficients. To determine these unknown 
coefficients, we require that equation (29) be satisfied 
at n - 2 = pl collocation points. This set of pl 

equations provides a set of n - 2 nonlinear algebraic 
equations for n - 2 unknown coefficients. In accor- 
dance with the approximation theory [17,18], the 
Gaussian-Legendre quadrature points of order p 

relative to the interval [vi, vi+,] are chosen as the 
collocation points in each subinterval. If, for each 
integer p, - 1 < 1, < A2 < . < 1, < 1 denote the p 

Gaussian-Legendre points relative to the interval 
[ - 1, 11, then the p collocation points in each sub- 
interval [vi, vi+ ,] are given as 

Qi.j = $(Vi + Vi+11 + lAj(9i+l - rlih 

l<,j<p, l<i<l. (31a) 

The linear index for these collocation points may be 
generated by setting 

;Ifi-llp+j =Q~,~ for l<j<p and l<i<I. 

(31b) 

Evaluating equation (29) at the collocation points 
u~,~, we obtain the following system of equations: 

Nu i aiNl’.doq.j) - i aiNi.,(uq.j) I 1 
4 

i=.IL i=JI. 

An illustrative example 

For the purpose of illustrating the application, we 
consider a specific calculation in which I = 3, no = 1. 
With two boundary conditions given byequation (7), 
we clearly have m = 2 and v = m = 2 in equation (14). 
If we choose p = 2, then we obtain k = 4 and n = 8 
from equation (14). For the above values of various 
parameters, namely k = 4, v = 2, I = 3, and the 
breakpoints at r) = 0,0.3,0.7 and 1.0, Fig. 3 shows the 
plot of both B-splines and their corresponding first 
derivatives calculated by using the subroutine pack- 
age developed by De Boor [22]. From this figure it is 
clear that in every interval there are only four B- 
spline.basis functions that are nonzero. This can also 
be seen by considering expansion (28) in each interval 
separately. Thus, for j = 1, r) E (qr, q2), 

e(q) = ? aiN,., 
i=* 

(34a) 

wherein J = j(k - v) + v = 4, J,, = J - k + 1 = 1; 

for_i = 2, 1 E (t12, v3A 

e(q) = i d’Ji,t(q); 
i=3 

Wb) 

(34c) 

For p = 2, lj in equation (31a) has the values 1, = 
- l/,/3 and 1, = l/a. With these values of A,, we 
can readily calculate collocation points from equation 
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FIG. 3. Plots of B-splines f+‘,.,(q) and first derivative &(q) for k = 4, v = 2 and I = 3 with breakpoints at 
1 = 0, 0.3, 0.7 and 1. 

(31) by using the previously given break-points. In 
view of expansion (34), equation (32) yields the 
following set of six equations: 

forq=landl<jj2, 

NC, ,iI aiN;‘.k(a,,j) - 

forq=2and 1 <j<2, 

l 4 
+ - eIEZ(uZ./) + eL?EZ(r10 - u2.j) 

{ 

4 

2 

aiNi.du2.j) 1 
Wb) 

forq=3andl<j<2, 

NC, iis aJ;IJo3.,) - 5 
[ 

4 

aiNi.Ju3.j) 
.i=5 1 

~tEz(a3.j) + &w. - u3,j) 

The remaining two unknowns are determined by using 
equation (30). Thus, equations (35) and (30) constitute 
a set of eight equations to determine n = 8 unknowns. 

COMPUTATIONAL DETAILS AND RESULTS 

With a, and a, given by equation (30), equation (32) 
constitutes a set of n - 2 nonlinear algebraic equations 
which is solved by a library subroutine HYBRDl [23] 
based upon a modification of the Powell hybrid method 
[24]. However the kernel E,((q - (1) occurring 
in equation (5) or (32) is singular at 5 = q. therefore 
the evaluation of the integral in equation (32) is carried 
out by adaptive quadrature routine called DCADRE 
which is based upon a cautious adaptive Romberg 
extrapolation algorithm devised by De Boor [25]. The 
integrand evaluation is carried out by using cubic 
Hermite splines [26] for interpolation of temperature 
0 and the point values of exponential integral E, by 
library subroutine ESUBN, which uses rational Cheb- 
yshev approximations devised by Cody and Thacher 
[27]. We may note that the use of Hermite splines with 
its simple explicit basis is more convenient for the 
purposes of rapid interpolation. The relative error for 
evaluation of the integral in equation (32) was set at 
lo-‘, which in most cases permitted results to be 
computed by subroutine DCADRE with an estimated 
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bound on the absolute error of less than 10e6. The 

tolerance for nonlinear solver HYBRDl was set at 
lo-‘. The algorithm converges if either the Euclidean 
norm of the residue vector of the set of equations (32) is 
at this tolerance, or if the algorithm estimates that the 
relative error is at or less than this tolerance. 

From the previous discussion of the problem and 
the method of collocation based on the use of B- 
splines, we can identify the following sets of factors that 
affect the accuracy of the approximate solution: (i) 
optical thickness Q,, 0r and 8,, conduction-radiation 
parameter N,,, (ii) the distribution of breakpoints, (iii) 
the number of breakpoints, and (iv) the order of B- 
splines. The set (i) is particular to the con- 
duction-radiation problem and is not part of a 
numerical procedure utilized, but has a considerable 
effect on the accuracy obtainable from the use of a 
given numerical procedure. The effect of the distri- 
bution of breakpoints can substantially influence the 
accuracy obtainable from ‘boundary layer’ type prob- 
lems, however, for the range of parameters of set 
(i) investigated, it was felt the distribution of break- 
points would not significantly influence the accuracy 
obtainable and therefore uniform distribution of 
breakpoints was utilized throughout the study. For a 
fixed number of unknowns, it has been found pre- 
viously [21] that the use of high order B-splines 
produces oscillations in the spatial distribution of 
temperature. These oscillations increase as the order of 
B-splines increases and hence as the number of 
intervals decreases. Furthermore, it has been dem- 
onstrated [17] that for a parabolic equation the use 
ofcubic piecewise polynomials together with Gaussian 
quadrature points as collocation points results in an 
accuracy of up to fourth order. For this reason, we 

have kept the order of B-splines fixed at k = 4 
throughout this study. As is well known for any finite- 
difference procedure, the number of breakpoints 
should have a considerable influence on the accuracy 
obtainable and the corresponding computational 
time, consequently these were varied from a value of 
1 = 2 to I = 30. 

For the purpose of comparing the accuracy of 
the solution by the collocation method, a well 
known, finite-difference solution based on the method 
discussed previously by Viskanta and Grosh [4,6] was 
utilized. Unfortunately, the computational details, 
such as step size or the number of steps utilized, are not 
available. Therefore, the comparison is limited to 
checking the accuracy obtained by the method of 
collocation. However, the previous studies [21,26] of 
this method in relation to the solution of conduction 
dominated heat transfer problems have demonstrated 
that the collocation method is far more accurate and 
faster than the usual finite-difference methods for these 
problems. The temperature at the lower wall was used 
for nondimensionalizing the temperature, therefore 0, 
was set at 1.0 for all runs, the value of 0r was left as a 
variable parameter. The specific values of parameters 
no, Or and N,, selected are the sample values chosen 
from Crosbie and Viskanta [6] and Viskanta and 
Grosh [4]. 

The solution of equation (32) is presented in Fig. 4 
and Table 1. Figure 4 compares the temperature 
profiles as obtained by the collocation method for 
I = 10 with.the Viskanta and Grosh [4] solution. As can 
be seen, there is very satisfactory agreement between 
the two results as the two solutions almost lie over each 
other. Table 1 gives the numerical comparison for the 
values of heat flux at the lower wall with the numerical 

1.0 

0.2 

i 

-VlSKANTA AND GROSH [4] 

- - - - COLLOCATION METHOD 

00. 0.2 0.4 0.6 0.8 1.0 
RELATIVE OPTICAL DEPTH, 7/v. 

FIG. 4. Comparison of the temperature distribution obtained with collocation method for I = 10, with the 
finite-difference solution by Viskanta and Grosh [4] for Qz = 0.1 and q0 = 1.0. 
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data of Croboie and Viskanta [6]. To establish the 
convergence, the number of intervals I was varied 
from 2 to 30 (or the yalue of )z from 6 to 62). For small 
to moderate values of the optical thickness, I = 20 was 
adequate to obtain stability in the solution up to four 
decimal points. This was sufficiently accurate since the 
available finite-difference solution is given only to 
four decimal places. However, for the case of large 

optical thickness, e.g. q,, = 10, higher values of I were 
necessary to achieve stability in the fourth decimal 
place. In the former case I = 20 was selected as the 
benchmark calculation and in the latter case I = 30. 
For moderate to low values of qO, the results obtained 
with I = 2 show deviation of less than 4y,. The table also 
shows the Central Processing Unit (CPU) times on an 
IBM 3701195 computer for all the five values of N,,. 
For example, with 1 = 2, CPU time varies from I8 to 
26 s. The CPU times increase disproportionately with 
increasing 1. It may be pointed out that CPU times for 
a given value of fy,, are dependent on the value of N,,. 
The CPU time increases as N,, decreases. For q,, = 10, 
with I = 5, the maximum deviation appears to be no 
more than lo”, and in fact I = 8 produces a solution 
with very satisfactory accuracy for most engineering 
calculations. The benchmark values agreed with the 
finite-difference solution of Crosbie and Viskanta [6] 
to almost all the decimal places presented in the table. 

For the case of pure radiation, i.e. N,., = 0 for 
various values of optical thicknesses, the collocation 
solution was also compared with the exact analytical 
solution obtained by Heaslet and Warming [14]. 
These results for the temperature slips at the lower and 
upper walls are expressed in terms of nondimensional 
parameters a, and PO, respectively, and, for the heat 
flux at the lower wall, are presented in Table 2. Since 
the boundary conditions (7) or (30) had to be dropped 
due to temperature slip at the walls, equation (29) with 
N,, = 0, was also collocated at q = 0 and ‘1 = q. to 
supply the two additional equations. These two equa- 
tions together with equation (32) with N,, = 0, 
furnished the required set to obtain all the )I unknown 
expansion coefficients. In these runs I was varied from 
a value of 2 to 10 which gave a corresponding variation 
in CPU from 91 to 855 s for all 12 cases of optical 
thickness q. = 0.1-3.0. The maximum error with I = 2 
for the value of x0 appears to be no more than O.?“/, for 
values of p,, no more than 1.5%, and no more than l”/, 
for the heat flux at tlo = 3.0. Even for the case of 
a relatively optically thick medium with q,, = 10 and 
N,, = 0, the collocation method with 1 = 2 produces 
an answer with a deviation less than 7%, as can be seen 
from Table I. 

CONCLUDING REMARKS 

The collocation method based on the use of piece- 
wise polynomials combined with the use of the 
Gaussian-Legendre quadrature points as collocation 
points provides a very convenient technique for the 

solution of radiation-conduction problems. For the 

method, one needs no more than standard proven 

software available at any computing laboratory and 
this considerably reduces the preparation time for 
successfully setting up the problem on the computer. 
By virtue of being a high order and noniterative 
method, it provides the means for obtaining the 
desired accuracy with a small number of equations at a 
reasonable computational cost. 
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RESOLUTION DES PROBLEMES DE RAYONNEMENT-CONDUCTION 
A L’AIDE DUNE METHODE DE COLLOCATION UTILISANT 

UNE APPROXIMATION PAR LES FONCTIONS B-SPLINES 

Resume - Une methode de collocation utilisant les fonctions B-splines et une quadrature de Gauss est 
introduite pour la premiere fois dans la resolution des probltmes de thermique avec couplage entre 
conduction et rayonnement. On montre que cette methode foumit une technique sans iteration qui, a partir 

dun petit nombre d’equations, conduit a des solutions aussi prtcises que la mithode aux differences finies et 

ceci avec un co&t de calcul raisonable. Par comparaison avec la solution analytique exacte dans le cas du 

rayonnement pur, on montre que six equations au plus permettent d’obtenir une precision superieure a 2 ‘I,,. 

ersten Mal wird eine Kollokationsmethode, bei der B-Spline-Funktionen zur 
Approximation und die Punkte der GauDschen Quadratur als Kollokations-Punkte verwendet werden, auf 
die Losung von Warmeiibertragungsproblemen angewandt, die gleichzeitig von Leitung und Strahlung 
bestimmt sind. Es wird demonstriert, daD diese nichtiterative Methode mit einer nur geringen Zahl von 
Gleichungen ebenso genaue Liisungen wie die Methode der finiten Differenzen bei sehr annehmbarem 
Rechenaufwand liefern kann. Durch Vergleich mit exakten analytischen Lijsungen fiir den Fall reiner 
Strahlung wird gezeigt, daB man bis zu mittleren Werten der optischen Dicke nicht mehr als 6 Gleichungen 
Ibsen mu& urn eine Genauigkeit von besser als 2% zu erreichen. Unter diesen Umstanden erscheint die 
Methode eine attraktive Moglichkeit fur die Losung von Strahlungs-Wlrmeleitproblemen zu sein, wie sie 
bei Untersuchungen des Kernschmelzens von mit fliissigem Metall gekiihlten schnellen Brutreaktoren 

(LMFBR) auftreten. 

PEIIIEHME 3AflArl l-IO OAHOBPEMEHHbIM M3JlYYEHMIO I4 TEfUIOIIPOBO~HOC-l’H 
METOAOM KOJIJIOKAUMfi C MCfIOJIb30BAHMEM B-CfIJIAtiHOB B KAqECTBE 

AIIflPOKCMMHPYIGIIIMX @YHKHMi? 

AwoTamtn - MeTon KOJtflOKaUHik. OCHOBaHHblfi Ha uCnO,tb30BaHW1( B-cnnaiiHoa B KaWCTBe annpOKCu- 

MUpylOmuX ~yHKUUfi H TO’teK rayCCOBOfi KBaApaTypbt B KaYeCTBe KOnJtOKaUROHHbIX TOYCK, BncpBbIe 

HcnonbsyeTcs Ana pemeHrin 3ana9 nepeHoca Tenna oAkionpebreUH0 UsnysemieM u TennonpoBoAnocTbro. 

FloKasaHo. 9~0 3~0~ MeTon, ucnonb3ymmsit nepeMemiyr0 HeeTepausoHuyro cxeh4y c+2Ta, no3sonaeT 

TOJtbKO npH He6OJtbmOM KOJtH’teCTBe ypaBHeH,Ifi no,tyqHTb TaKyH) Xre TO’IHOCTL petUcH&,a. KaK u 

MCTOAOM KOHVIHUX pa3HOCTCii. HO npH MeHbUtliX BbIWICAHTeAbHblX 3aTpaTaX. CpaBHeHue C TOqHblM 

aHaARTHYeCKHM pemeHHeM A,ta CAyYax TOJlbKO OAHOrO u3AyqeHBR nOKa3aAO. ‘IT0 BnAOTb A0 yMepCHHbIX 

3Ha’teHufi OnTTWeCKOfi TOAmHHbI A.“,, nO,tyVeHHa TOYHOCTH a 2”, AOCTBTOSHO meCTW ypaBHeHuik MeToA 

MOTH0 HCnOJlb30BaTb npu peUteHHB TaKWX 3aAa’l IT0 “3JtyueHmO A TenJtOnpOBOAHOCTH, KOTOpbIe 

BCTfWIaIOTCK a CJty’lae WlaBJlCHEiIl CCPAWHHKOB B &%23)‘JIbTaTC npo6on. 


