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Abstract ~ A collocation method employing B-splines as approximating functions and the Gaussian
quadrature points as the collocation points is introduced for the first time to the solution of heat transfer
problems governed by simultaneous conduction and radiation. It is demonstrated that this method provides
an alternative noniterative technique which, with only a small number of equations, can produce solutions
as accurate as the finite-difference method, and at a very reasonable computational cost. By comparison with
exact analytical solution for the case of pure radiation, it is shown that, for up to moderate values of optical
thickness, one needs to solve no more than 6 equations to obtain an accuracy better than 2%,. The method
with these characteristics appears to be an attractive candidate for the solution of radiation—conduction
problems pertaining to LMFBR core disruptive meltdown accident analyses.

NOMENCLATURE

a;, coefficients of expansion;

d; multiplicity at the interior breakpoints;

gu{s:n), function defined by equation (15);

k, order of B-splines;

IR number of intervals:

m, number of boundary conditions;

N, conduction—radiation parameter defined
by equation {4);

Ni«(n), normalized B-splines defined by equation
{16);

n, the number of expansion coefficients;

p, the number of collocation points per
interval ;

4, radiation heat flux;

s total heat flux at the lower wall;

T, temperature;

Ty, temperature at the lower wall;

T,, temperature at the upper wall;

A dimensional coordinate from the lower

wall.

Greek symbols

%, 2AoT*0) - TUTE — T4

Bo, 2[aT*(no) — TSIATT — T3);

n, nondimensional coordinate from the
lower plate;

i breakpoints;

0, T/T,:

R, absorption coefficient ;

Ljs Gaussian~Legendre points in the interval
[-1.1];

v, degree of smoothness at the interior
breakpoints;

* Energetics Department, The University of Wisconsin-
Milwaukee, Milwaukee, WI 53201, U.S.A.

g, dummy integration variable in equation
(2);
¢ knots at the breakpoints;
A Stefan—Boltzmann constant,
INTRODUCTION

IN HYPOTHETICAL core disruptive and meltdown ac-
cidents such as initiated by loss of flow in a liquid metal
cooled fast breeder reactor (LMFBR), excessively high
temperatures are encountered such that radiation can
become a significant mode of heat transfer com-
pared to conduction and convection. Recently,
effort has been expended to investigate the effect of
radiation heat transfer in some safety analyses [1-3].
However integral analyses of these postulated ac-
cidents require massive computer codes which can
strain the capacity of even the largest of the computers
available both with respect to storage and computing
time requirements. Therefore, one of the desired
requirements for including the effect of radiation heat
transfer in accident analysis codes is that the com-
putational method utilized be of high order so that the
storage and computation time requirements are mini-
mized. It is with this motivation that the application of
the collocation method to radiation heat transfer
problems is pursued in this paper.

Itis well known that the formulation of the radiative
heat transfer problem combined with the conduction
mode of heat transfer leads to a nonlinear
integro—differential equation. There are no general
solutions available for this integro-differential equa-
tion because of inherent complexity resulting from
the radiative contribution to the total heat flux for a
given geometrical configuration of the system. There-
fore, by necessity only finite-difference and approx-
imate solutions for very specific geometrical con-
figurations are available. Steady-state heat transfer by
coupled conduction and radiation through a plane
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layer of an absorbing and emitting medium bounded
by two opaque paralle! walls has been studied most
widely. Viskanta and Grosh [4,5] solved iteratively
the Fredholm nonlinear integral equation resulting
from integrating the original integro—differential
equation twice. Using the same technique, the non-
gray effects in the above geometry were studied by
Crosbie and Viskanta [6] and Anderson and Viskanta
[7]- There are, however, a number of other methods
such as the exponential kernel approximation em-
ployed by Lick [8], the method of quasilinearization
used by Timmons and Mingle [9], the combination of
normal-mode expansion and an iterative technique
employed by Lii and Ozisik [10], and the method in
which the integro—differential equation is reduced to a
nonlinear differential equation by a Taylor series
expansion of the dependent variable occurring as the
fourth power of temperature as used by Anderson and
Viskanta [11]. An extensive review of the literature on
heat transfer in semitransparent solids is presented by
Viskanta and Anderson [12]. For the case of pure
radiation in the above-mentioned plane geometry,
both exact analytical and numerical solutions [13—15]
are also available. The majority of the above studies
have utilized numerical methods which are iterative in
nature. Although the respective procedures underlying
these iterative methods are quite straightforward, they
are computationally very time-consuming and have
large storage requirements. This is because of the
iterations involved and the size of the system of finite-
difference equations resulting from the choice of small
step sizes necessary for producing desired accuracy,
particularly for the case of an optically thick medium.
This last limitation of finite-difference methods is
particularly serious with regard to their application to
LMFBR accident analysis codes because molten
mixed oxide fuels of uranium and plutonium are
optically thick.

An alternative method, based on collocation com-
bined with the use of approximating subspaces, over-
comes many of the above-described disadvantages of
the iterative finite-difference methods by virtue of
being a higher order and noniterative method requir-
ing the solution of only a small number of equations to
achieve the desired accuracy at a very reasonable
computational cost. The method consists of expanding
the unknown temperature profile in terms of a piece-
wise B-spline basis in the space variable. The unknown
coefficients in the expansion are obtained by requiring
that the resulting equation be satisfied at a number of
points (in particular at the Gaussian quadrature
points) in the field equal to the number of unknown
coefficients. This collocation procedure reduces the
integro—differential equation to a system of nonlinear
algebraic equations which are solved by nonlinear
system solvers based on various modifications and
combinations of Newton's algorithm and the method
of steepest descent.

Previously, for solving pure radiative transfer prob-
lems, the spline collocation method has been utilized
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by Kanasz and Hummer [16]. These authors used the
smooth cubic splines with breakpoints as the col-
location points. It has been shown, however, by
Douglas and Dupont [17] and De Boor and Swartz
[18] that the use of other than the optimum points as
collocation points produces lower order accuracy.
Similar to the above spline collocation method, but
more accurate, is the method known as the Hermitian
method developed by Auer [19] also for solving
radiative problems.

DESCRIPTION OF THE PROBLEM

Since the purpose of the present paper is to dem-
onstrate for the first time the applicability, versatility
and the order of accuracy of the collocation method to
combined radiation and conduction heat transfer
problems, we have chosen a simple physical system
which retains the essential features of radiative heat
transfer but avoids the distractions of complex
geometrical relationships. The physical system con-
sidered is shown in Fig. 1. We will assume that the
medium is gray, nonscattering and at rest, and that the
absorption coefficient and thermal conductivity of the
medium are independent of temperature. The bound-
ing surfaces consist of two parallel black plates which
extend indefinitely in all directions and are isothermal
but maintained at two different temperatures T, and
T,, respectively. That is, heat transfer by both modes
under consideration is one-dimensional.

With the previously discussed assumptions, the
equation expressing conservation of energy is given as

[20]
d’T  dq,

KN— =
dn*  dpy

(n

where K is the thermal conductivity of medium, T is
the absolute temperature in °K, x is the absorption
coefficient, n is the optical depth defined as n = xy, y
being the coordinate from the lower plate. Here, g, is
the radiation heat flux given as [20]

4.n) = ZUT?Es(’l) - 20T§E3(i10 -n

n
+2 [ o THE)E;(n — $)dE
JO

~2 I " aTUE5(E - mde. (2a)

n

The total heat flux at the lower wall, conductive plus
radiative, is

IT]=KV

Fic. 1. One-dimensional combined conduction and

radiation.
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oT
w=|—KK—+ q,) . (2b)
q ( 5r] n=0

The derivative of heat flux ¢,(n) can be written as

dq,
dn

= - [2UT?E1(’7) + 26T3E;(no — m)

*no

+2

o THEIE(|n — ¢[)dS — 46T‘(rl)]-(3)
JO
Here, the E () are the exponential integral functions
and n, is the optical thickness of the medium.

It is convenient to nondimensionalize the above
equations by introducing the following dimensionless
quantities :

T(n) T, T,

=" g, =-L.9,=
0('1) TR, 1 TR’G- TR

Kk

N, = —=_
T 40T

@)

s

where T is an arbitrary temperature.
With the use of the above nondimensional quan-
tities, and of equation (3) into equation (1), we obtain
d’0

i
N, —0* ~| B1E,
trdrlz ('7)+2‘ 1 -(’1)

L
+9‘§E3('10—'1)+J OHQE (|n — ¢S |=0. (5)

o

Expression (2) takes the form

g9 |
4= _—Tz= 20%Es(n) — 03E;(no — 1)
R

+ j O*C)E,(n — &)d¢
0
- J GHQENE — mdE | (6a)

J

The total heat flux ¢, giveh by expression (2b) in
dimensionless notation becomes
A _ dé

= —4N,— + 6%
aT% “dn !

gn =

N

- ‘ 203E4(n,) + f

0

9‘(5)Ez(é)dé]- (6b)

The boundary conditions that equation (5) must
satisfy are ’

8(0) = 0,, 0(no) = 0,. (7N

Clearly the integro—differential equation (5) is non-
linear because temperature 8(n) occurs to the fourth
power in terms depicting the effect of radiation. The
parameter N, occurring in this equation is called the
conduction—-radiation parameter and determines the
relative role of the conduction vs radiation term.
For large values of N,,, conduction predominates, and
at low values of N,, radiation is the dominant mode of
heat transfer. We may note specifically as N, — 0,
equation (5) reduces to an integral equation, in which
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case the boundary conditions (7) must be dropped;
consequently, ‘temperature slip’ at the bounding sur-
faces will occur.

METHOD

We shall assume that 8(5) can be approximated by
nonsmooth piecewise polynomials in # generated by
B-spline basis sets. More specifically, let the interval
[0,7,] be subdivided by a set of points, called the
breakpoints, thus

=0 <y <...<N<Nyy =HNo

Relative to this partition =, let .#, . denote the space
of piecewise polynomials { f;}i ; of order k (degree = k
‘— 1) and smoothness v = {v;}{_, (i.e. continuity of
derivatives of functions f; up to order v; — 1) at the
interior breakpoints. So

dim 2, , . =n=kl -

i

1

Vis (8)
=2
where the first term represents the total number of
coefficients of [ piecewise polynomials (one per interval
of the partition n) and the second term represents the
total number of smoothness constraints to be imposed
on functions {f;}!., at the interior points. Now, let the
approximating subspace ¥, ., < .#, ., be obtained
by imposing m boundary conditions on the elements in
Py nr then

!
dim ’yk.x.\' =ki— Z Vi —m. (9)
i=2

We now seek an approximate solution of equation (5)
of the form

0m) = 3 aw(n) (10)

i=1

where the set {w,(n)};., forms a basis for the approx-
imating subspace ¥, ., of functions which satisfy
boundary conditions (7). The expansion (10) is then
used in equation (5) and this equation is required to
hold at a specified set of (collocation) points. This
process leads to a system of nonlinear algebraic
equations for the coefficients {a;}7_,. Now let p be the

number of collocation points selected per interval in

partition =, then we must have
dim %, ., = pl. (11)

Thus, we obtain from equations (9) and (11)
1
pl=ki—Y vi—m. (12)
i=2

If we require that v; = v at each of the interior
breakpoints, identity (12) becomes

pl=ki—v(l—1)—m=(k—v)i+(v—m)} (13)
which must hold for any number of subintervals /; thus
k=p+v, v=m, n=pl+v. (14)

The above procedure and the discussion of the B-
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spiines to be given below will be well illustrated
subsequently by considering very specific examples.

B-spline basis

A very detailed discussion of B-splines basis is given
in Refs. [21] and [22]. In the latter reference a
discussion of an algorithm for generating these splines
is also given. For use in the present analysis, we
summarize below some of the important features of B-
splines.

To generate a B-spline basis for the space #; . .,
define

(s—ny!

yk(s;n)=(s—nl*:‘={0 sz

and let the set of multiple knots {¢;}72f be defined by
G=...

Seor =

g’\'+rlv+ dH) T = §k+(l:+...-bdl =N; J < L

Snt1 = o = Cnak = Msr-

The first and last breakpoints, n, and n,,, have
multiplicity k and the interior breakpoints have mul-
tiplicity d; = k — v;. The construction of these knots is
shown schematically in Fig. 2. With each knot, we
associate the normalized B-spline N, ,(n) defined as the
kth divided difference of g,(s, n) in s on the set of knots
Cryevny Civpo LE0

Nian) = Civi — Sgul&i - - - Civnstl)
= GlCivrs- s Sivx)
= gulSis s Civn-13). (16)
Thus, from equations (15) and (16), we have
Nidmy=0 for n¢[Ei Sivals (17

which implies that N, {n) has its support in [&, &+, ].
In addition the normalized B-splines N, ,(n) possess
the following useful properties:
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> Num=1, (18)
i=1
Nign) >0 for ne(, Sivid (19)
Nixln) =1, Ny om)=—k—=1)/n, - ),

(20)
Nosmer) =1, Nogmay) = (k=114 —n)-

(21)

Since Niy(n) = Ofor 1 < i < nandneln, nels
it follows from normalization property (18} that

Nign)=0 for 1 <i<gn,

Nidmyy)=0 for 1 <i<n (22ab)
For the values of the derivatives of N, ,(n) at the end
breakpoints, we start by considering the behavior of
N;(matn = n, for2 < i < n. Let us first consider the
case k + 1 < i < n:since N;,(n) has its support in
(i Eiv ) With &; 2 15, it follows that N, ,(n) = Oforn <
n,:thus N; (1) and all its derivatives will vanish atn =
n,. Next, we consider 2 < i < k, and in particular the
case i = 3:since N ,(n)is a kth divided difference over
theset &a,..., 43, Where &y = ... = & (=n,)appear
k — 2 times, this divided difference N, (1) has a knot
of multiplicity d = k — 2 at n = n,; since the
smoothness index v for Nj,(y) at n, satisfies the
relationv = k — d = k — (k — 2) = 2, we see that
N, ,(n) has a continuous derivative at n = n,. Now
N3 (n) = Oforn < 5, ; therefore N ,(n,) = 0. When 3
< i € k,asimilar argument shows that N, ,(#) hasi —
2 continuous derivatives at # = »ny, thus N{,(n,) = 0
for 2 < i < k. More generally, we have

N¥(n)=0 for0gqg<i—2 and 2<i<gk

(23)

Here we have used equation (22a) for the case i = 2.
From the normalization property (18) we have

Z Nign)=0 for nelny, nsil (24)
i=1

; =0 =
BREAKPOINTS 1]' 7]2 173 7)[ 7(+|
L 1 | | |
] ] | | L
CONTINUITY CONDITIONS: v, =0 v, Uy vy Vg7 0
KNOT MULTIPLICITY: d, =k_ul=k d2=k-u2 d3=k-u dz=k—uZ le:k-tiH-k
| 1 I | I
I | | | |
51 €k+| ezk—uzﬂ d|+_v '+dl-l“ enH
* L ] [ ) L) L]
H = s L] s L ) L ] L ]
KNOTS: m, : , . KA : nl : 7’[+| :
& Ezk-vz 3k, ~v, < n+k

FIG. 2. Construction of knots at various breakpoints.
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The use of equation (23) in equation (24) gives
Nixn) + Niyng) =0 (25)

with N,.(n,) given by equation (20). Analogous
argument will show that

N&m«)=0 for0ggsn—i—1
and n—k+1<ig<n—-1. (26)
Thus, from equations (24) and (26), we obtain
N ialis 1) + Noalns ) =0 2n

with N, ,(n,+,) given by equation (21).

Expansions in normalized B-splines
Expansion (10) for 6(n) in terms of normalized B-
splines becomes

Z aiN; «(n).

i=1

O(n) = (28a)
Since each N ,(n)is nonzero only in the interval n e [,
¢ivi).itfollows that when ne(n;,n;41), Nix(n) # Ofori
=J—-k+1,..,JwithJ =jk —v)+vforl <<l
So equation (28a) becomes

J

Z aiN, (),

i=Jy,

0(n) =

for ne(ny njeq), 1<j<I (28b)

where J, =J —k + L.

In application to equation (5), we observe that two
boundary conditions given by equation (7) are im-
posed, so that m = v = 2 in equation (14). Thus we will
be concerned with normalized B-splines of order k =
p + 2. The substitution of equation (28) into equation
(5) yields

N, Z aiN7 () — [Z aiNi.k(q)T
1
+ E{G?Ez(ﬂ) + 03Ex(no — 1)
1o
“|
[\

and the use of equations (20), (21) and (22) in equation
(7) yields

2 aiNi.k(é)TEl(l" - Cl)dé} =0 (29)

a, =0, a,=86,. (30)
Witha, = 0, and a, = 0,, equation (29) contains n —
2 unknown coefficients. To determine these unknown
coefficients, we require that equation (29) be satisfied
at n — 2 = pl collocation points. This set of pl
equations provides a set of n — 2 nonlinear algebraic
equations for n — 2 unknown coefficients. In accor-
dance with the approximation theory [17,18], the
Gaussian—Legendre quadrature points of order p
relative to the interval [n;, n;,,] are chosen as the
collocation points in each subinterval. If, for each
integer p, —1 < 4; < 4; <... < 4, < l denote the p
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Gaussian—Legendre points relative to the interval
[—1,1], then the p collocation points in each sub-
interval {n,, n,, ] are given as

;= %(’1.‘ + 1) + %Aj(’h'n
1<j<p,

The linear index for these collocation points may be
generated by setting

= Nk

1<i<!l (31a)

Yi-np+j =05 for1<j<pand 1<igl

(31b)

Evaluating equation (29) at the collocation points
o; ;» we obtain the following system of equations:

> )| %

i=Jyp i=Jp

14
N:Ik aiNi.k(aq,j)]

1
+ E%G?El(aq.j) + 03E;,(n — 044

+f‘ ) aN.k(aq,)T ( 4,—¢|)dc}=0
v (32)
wherein
n=0,;€MuNy+1) J=qlk =2} +2,
I<g<l 1<j<p (33)

An illustrative example

For the purpose of illustrating the application, we
consider a specific calculation in whichl = 3,5, = 1.
With two boundary conditions given by equation (7),
we clearly have m = 2and v = m = 2 in equation (14).
If we choose p = 2, then we obtaink = 4andn = 8
from equation (14). For the above values of various
parameters, namely k = 4, v = 2,1 = 3, and the
breakpoints at n = 0,0.3,0.7 and 1.0, Fig. 3 shows the
plot of both B-splines and their corresponding first
derivatives calculated by using the subroutine pack-
age developed by De Boor [22]. From this figure it is
clear that in every interval there are only four B-
spline-basis functions that are nonzero. This can also
be seen by considering expansion (28) in each interval
separately. Thus, for j = 1, n € (n,, n,),

4

Z aN; (n)

i=1

B(n) = (34a)

whereinJ = jtk —v)+v=4J, =J —k+1=1;
for j = 2, n € (12, 13),

[

0(n) = Z aN; () (34b)
i=3
forj = 3’ V’ € (’73* '74),
8
0() = 3. a;Nixn). (34c)

i=s
For p = 2, 4; in equation (31a) has the values 4, =

- 1/\/3 and A, = 1/\/5. With these values of 4;, we
can readily calculate collocation points from equation
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1.0 , [ 10 [ |
0.8 N1.4(77) I NM('r)) i
- o~ N, (7) 4 F -
= 08 /I \ —V/ e — Ns,a (M) "/\\
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\ N, 4(7)
\\ A ] - ’ ’ N
// . \\‘~\I I - l// Y
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z 2 4 \ \
< / Ve ~—/' ]
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(o] Q.3 0.7 1.0 0 0.3. 0.7 1.0
n 7

FIG. 3. Plots of B-splines N (1) and first derivative Ni,(n)for k = 4, v = 2and | = 3 with breakpoints at
n=20,030.7and 1.

(31) by using the previously given break-points. In
view of expansion (34), equation (32) yields the
following set of six equations:

forg=1land1<j<2,

4 4
Ne ¥ aiNiyo, ) —[2

i=1 i=1

14
aN, (o, .j)—l

1
+ i{eth(al.j) + 03E,(no — 7.4

no 4 4.
+f [Z aiNi.k(al.j):' E|(|ax.j—5])df}=0
o Li=1
(35a)

forg=2and 1 <j<2,
6

6
N(‘r Z al'N;".k(al.j) - [ Z
i=3

=3

4
aiNi.h(GZ’.j)]
1§ 4 a
+ 3 O%Ej(a; ;) + 03E;(no — o2 )

o 6 4
+J |:Z aiNl‘.k(al.j)" E1(|02.j"§|)df}=0
o Li=3 N
(35b)
forg=3and 1 <j<2,

8 8
N, Z alN;ilz(o-lj) - [Z

i=$ i=5

4
aiNi.k(”S.j)_l

™ 4
+ 2 O1Es(04 ) + 02E5(no — 03))

no 8 4
+ f [Z aiNi.k(o'S.j)" Ei(|os;— ¢|)df} =
o Li=s -

(35¢)

The remaining two unknowns are determined by using
equation (30). Thus, equations (35) and (30) constitute
a set of eight equations to determine n = 8 unknowns.

COMPUTATIONAL DETAILS AND RESULTS

With @, and a, given by equation (30), equation (32)
constitutes a set of n — 2 nonlinear algebraic equations
which is solved by a library subroutine HYBRD1 [23]
based upon a modification of the Powell hybrid method
[24]. However the kernel E(|n — ¢&|) occurring
in equation (5) or (32) is singular at ¢ = #, therefore
the evaluation of the integral in equation (32) is carried
out by adaptive quadrature routine called DCADRE
which is based upon a cautious adaptive Romberg
extrapolation algorithm devised by De Boor [25]. The
integrand evaluation is carried out by using cubic
Hermite splines [26] for interpolation of temperature
0 and the point values of exponential integral E, by
library subroutine ESUBN, which uses rational Cheb-
yshev approximations devised by Cody and Thacher
[27]. We may note that the use of Hermite splines with
its simple explicit basis is more convenient for the
purposes of rapid interpolation. The relative error for
evaluation of the integral in equation (32) was set at
1073, which in most cases permitted results to be
computed by subroutine DCADRE with an estimated
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bound on the absolute error of less than 107¢. The
tolerance for nonlinear solver HYBRD! was set at
10~7. The algorithm converges if either the Euclidean
norm of the residue vector of the set of equations (32)is
at this tolerance, or if the algorithm estimates that the
relative error is at or less than this tolerance.

From the previous discussion of the problem and
the method of collocation based on the use of B-
splines, we can identify the following sets of factors that
affect the accuracy of the approximate solution: (i)
optical thickness #,, 8, and 8, conduction-radiation
parameter N,,, (ii) the distribution of breakpoints, (iii)
the number of breakpoints, and (iv) the order of B-
. splines. The set (i) is particular to the con-
duction-radiation problem and is not part of a
numerical procedure utilized, but has a considerable
effect on the accuracy obtainable from the use of a
given numerical procedure. The effect of the distri-
bution of breakpoints can substantially influence the
accuracy obtainable from ‘boundary layer’ type prob-
lems, however, for the range of parameters of set
(i) investigated, it was felt the distribution of break-
points would not significantly influence the accuracy
obtainable and therefore uniform distribution of
breakpoints was utilized throughout the study. For a
fixed number of unknowns, it has been found pre-
viously [21] that the use of high order B-splines
produces oscillations in the spatial distribution of
temperature. These oscillations increase as the order of
B-splines increases and hence as the number of
intervals decreases. Furthermore, it has been dem-
onstrated [17] that for a parabolic equation the use
of cubic piecewise polynomials together with Gaussian
quadrature points as collocation points results in an
accuracy of up to fourth order. For this reason, we
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have kept the order of B-splines fixed at k = 4
throughout this study. As is well known for any finite-
difference procedure, the number of breakpoints
should have a considerable influence on the accuracy
obtainable and the corresponding computational
time, consequently these were varied from a value of
[=2to =30

For the purpose of comparing the accuracy of
the solution by the collocation method, a well
known, finite-difference solution based on the method
discussed previously by Viskanta and Grosh [4, 6] was
utilized. Unfortunately, the computational details,
such as step size or the number of steps utilized, are not
available. Therefore, the comparison is limited to
checking the accuracy obtained by the method of
collocation. However, the previous studies [21, 26] of
this method in relation to the solution of conduction
dominated heat transfer problems have demonstrated
that the collocation method is far more accurate and
faster than the usual finite-difference methods for these
problems. The temperature at the lower wall was used
for nondimensionalizing the temperature, therefore 0,
was set at 1.0 for all runs, the value of 8, was left as a
variable parameter. The specific values of parameters
o, 8; and N, selected are the sample values chosen
from Crosbie and Viskanta [6] and Viskanta and
Grosh [4].

The solution of equation (32) is presented in Fig. 4

.and Table 1. Figure 4 compares the temperature

profiles as obtained by the collocation method for
I=10 with the Viskanta and Grosh [4] solution. As can
be seen, there is very satisfactory agreement between
the two results as the two solutions almost lie over each
other. Table 1 gives the numerical comparison for the
values of heat flux at the lower wall with the numerical

VISKANTA AND GROSH [4]
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F1G. 4. Comparison of the temperature distribution obtained with collocation method for | = 10, with the
finite-difference solution by Viskanta and Grosh [4] for 6, = 0.1 and 5, = 1.0.
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data of Crosoie and Viskanta [6]. To establish the
convergence, the number of intervals | was varied
from 2 to 30 (or the value of n from 6 to 62). For small
to moderate values of the optical thickness, | = 20 was
adequate to obtain stability in the solution up to four
decimal points. This was sufficiently accurate since the
available finite-difference solution is given only to
four decimal places. However, for the case of large
optical thickness, e.g. n, = 10, higher values of [ were
necessary to achieve stability in the fourth decimal
place. In the former case | = 20 was selected as the
benchmark calculation and in the latter case / = 30.
For moderate to low values of 5, the results obtained
with /=2 show deviation of less than 4¢ . The table also
shows the Central Processing Unit (CPU) times on an
IBM 370/195 computer for all the five values of N,,.
For example, with [ = 2, CPU time varies from 18 to
26 s. The CPU times increase disproportionately with
increasing [ It may be pointed out that CPU times for
a given value of n, are dependent on the value of N,.
The CPU time increases as N, decreases. For 5, = 10,
with / = 5, the maximum deviation appears to be no
more than 10%, and in fact { = 8 produces a solution
with very satisfactory accuracy for most engineering
calculations. The benchmark values agreed with the
finite-difference solution of Crosbie and Viskanta [6]
to almost all the decimal places presented in the table.

For the case of pure radiation, ie. N, = 0 for
various values of optical thicknesses, the collocation
solution was also compared with the exact analytical
solution obtained by Heaslet and Warming [14].
These results for the temperature slips at the lower and
upper walls are expressed in terms of nondimensional
parameters «, and B, respectively, and, for the heat
flux at the lower wall, are presented in Table 2. Since
the boundary conditions (7) or (30) had to be dropped
due to temperature slip at the walls, equation (29) with
N, = 0, was also collocated at y = 0 and 5 = 5, to
supply the two additional equations. These two equa-
tions together with equation (32) with N, = 0,
furnished the required set to obtain all the n unknown
expansion coefficients. In these runs / was varied from
a value of 2 to 10 which gave a corresponding variation
in CPU from 91 to 8555 for all 12 cases of optical
thickness n, = 0.1-3.0. The maximum error with! = 2
for the value of x, appears to be no more than 0.2, for
values of 8, no more than 1.5%, and no more than 1%,
for the heat flux at #, = 3.0. Even for the case of
a relatively optically thick medium with n, = 10 and
N, = 0, the collocation method with | = 2 produces
an answer with a deviation less than 7%, as can be seen
from Table 1.

CONCLUDING REMARKS

The collocation method based on the use of piece-
wise polynomials combined with the use of the
Gaussian—Legendre quadrature points as collocation
points provides a very convenient technique for the
solution of radiation—conduction problems. For the
solution of these problems with the collocation

T. C. CHawLa and S. H. CHaN

method, one needs no more than standard proven
software available at any computing laboratory and
this considerably reduces the preparation time for
successfully setting up the problem on the computer.
By virtue of being a high order and noniterative
method, it provides the means for obtaining the
desired accuracy with a small number of equations at a
reasonable computational cost.
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RESOLUTION DES PROBLEMES DE RAYONNEMENT-CONDUCTION
A L’AIDE D'UNE METHODE DE COLLOCATION UTILISANT
UNE APPROXIMATION PAR LES FONCTIONS B-SPLINES

Résumé — Une méthode de collocation utilisant les fonctions B-splines et une quadrature de Gauss est
introduite pour la premiére fois dans la résolution des problémes de thermique avec couplage entre
conduction et rayonnement. On montre que cette méthode fournit une technique sans itération qui, a partir
d'un petit nombre d’équations, conduit 4 des solutions aussi précises que la méthode aux différences finies et
ceci avec un coiit de calcul raisonable. Par comparaison avec la solution analytique exacte dans le cas du
rayonnement pur, on montre que six équations au plus permettent d’obtenir une précision supérieure 4 2.
Cette méthode parait étre trés intéressante dans la résolution des problémes de conduction-rayonnement.

DIE LOSUNG VON WARMELEITUNGSPROBLEMEN BEI STRAHLUNG DURCH
EINE KOLLOKATIONSMETHODE MIT APPROXIMATION DURCH
B-SPLINE-FUNKTIONEN

Zusammenfassung—Zum ersten Mal wird eine Kollokationsmethode, bei der B-Spline-Funktionen zur
Approximation und die Punkte der GauBschen Quadratur als Kollokations-Punkte verwendet werden, auf
die Losung von Wirmeiibertragungsproblemen angewandt, die gleichzeitig von Leitung und Strahlung
bestimmt sind. Es wird demonstriert, daB diese nichtiterative Methode mit einer nur geringen Zahl von
Gleichungen ebenso genaue Losungen wie die Methode der finiten Differenzen bei sehr annechmbarem
Rechenaufwand liefern kann. Durch Vergleich mit exakten analytischen Losungen fiir den Fall reiner
Strahlung wird gezeigt, dal man bis zu mittleren Werten der optischen Dicke nicht mehr als 6 Gleichungen
16sen muB, um eine Genauigkeit von besser als 2%, zu erreichen. Unter diesen Umstinden erscheint die
Methode eine attraktive Moglichkeit fiir die Losung von Strahlungs—Wirmeleitproblemen zu sein, wie sie
bei Untersuchungen des Kernschmelzens von mit fliissigem Metall gekiihlten schnellen Brutreaktoren
(LMFBR) auftreten.

PEHIEHUE 3AZIAY MO OJHOBPEMEHHBIM W3JIVYEHHIO U TEMJIOMNPOBOAHOCTU
METOAOM KOJIJIOKAUMH C UCMOJL30BAHUEM B-CITJIAWHOB B KAYECTBE
AMMPOKCUMHUPYIOIUX ®YHKIIUA

AHHOTauHA — MeTo/ KOLTOKallMi, OCHOBAaHHBIH Ha HCNOJL30BaHHUM B-CNaitHOB B Ka4YecTBe annpoKcH-
MUPYIOWHKX GYHKUHI M TOUEK raycCOBOH KBaApaTyphl B Ka4YecTBE KOJIOKAUHMOHHBIX TOYEK, BIEPBBIE
UCNOJIb3YyeTCs NS PELUEHHA 3aa4 NepEHOca TEMIa OQHOBPEMEHHO H3JTYYEHHEM H TEMJIONPOBOIHOCTHIO.
Floka3aHo, 4TO TOT METO, HCTIONbL3YIOWMIA 1EPEMEHHYIO HEHTEPALIMOHHYIO CXeMY CuéTa, NO3BONAET
TOJbKO NpPH HEGOJIBIIOM KOJIMYECTBE YPaBHEHMH NMOSYYHTL TaKyio X€ TOYHOCTb DEIICHHS, KaK H
METOJIOM KOHEUHBIX PAa3HOCTEH, HO NPH MEHBUIMX BBLIYHCIHUTENbHbIX 3aTpaTaXx. CpaBHEHHE C TOYHBIM
AHAJIHTHYECKHM pELIEHHEM /UTA ClTy4asi TONLKO OJHOTO H3JY4EHHSA MOKA3aJl0, 4TO BILIOTh 1O YMEPEHHBIX
3Ha4Y€HHH ONTHYECKON TONHHEI s MOJIy4eHHS TOYHOCTH B 2°, IOCTaTOYHO LIECTH ypaBHEHHit. MeToa
MOXHO MCMOJIb30OBATH TIPH PEHICHMH TAKMX 3a/a¥ MO H3NYYEHHXO K TEIUIONPOBOAHOCTH, KOTOpbIE
BCTPEYAIOTCH B CJIyyae MJ1aBJICHAS CEPAEYHHKOB B pe3yJibTaTe npobos.



